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We give a generalized Lagrangian density of 1 + 1 Dimensional O(3) nonlinear σ

model with subsidiary constraints, different Lagrange multiplier fields and topological
term, find a lost intrinsic constraint condition, convert the subsidiary constraints into
inner constraints in the nonlinear σ model, give the example of not introducing the
lost constraint Ṅ = 0, by comparing the example with the case of introducing the lost
constraint, we obtain that when not introducing the lost constraint, one has to obtain
a lot of various non-intrinsic constraints. We further deduce the gauge generator, give
general BRST transformation of the model under the general conditions. It is discovered
that there exists a gauge parameter β originating from the freedom degree of BRST
transformation in a general O(3) nonlinear sigma model, and we gain the general
commutation relations of ghost field.

KEY WORDS: σ model; gauge condition; BRST transformation; commutative rela-
tion; constraint system.

PACS numbers: 11.10.Lm; 11.30.Ly

1. INTRODUCTION

1+1 dimensional nonlinear σ -model was introduced, at the beginning, as
effective theories describing the interaction of Goldstone particles (Coleman et al.,
1961; Callan et al., 1969), these theories have the many similar points with 3 +
1 dimensional Yang-Mills theories. And the two are both the scale invariance and
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renormalizable (Vainshtein et al., 1986; Zamolodchikov et al., 1979). Another
important similar property is that they are both constraint systems: in Yang-Mills
theories, constraints are acquired due to the gauge freedom degrees; in σ -model,
usually adopting the different method, e.g., taking the Lagrange multiplier fields.
And noncommutative Yang-Mills systems (Li and Wu, 2000) are still constraint
systems. 1 + 1 dimensional nonlinear σ -model has instantons, asymptotic freedom
and nonperturbative spectra, which are analogous to gauge field theories in 3 + 1
dimensional spacetime (Polyakov et al., 1975; Novikv et al., 1984). Panigrahi, Roy,
Scherer, Wilczek, Wu and Zee, extensively studied 2 + 1 dimensional different
nonlinear σ -models with Hopf terms or Chern-Simons (Wilczek et al., 1983;
Bowick et al., 1986, Wu and Zee, 1984; Panigrahi et al., 1988), and Dzyaloshinskii,
Polyakov and Wiegmann used nonlinear σ -models to investigate high temperature
superconductivity and fractional Hall effect (Polyakov, 1988; Dzyaloshinskii et al.,
1988, Wiegmann, 1988).

Gauge symmetry enhancement and radiatively induced mass in the large N
nonlinear sigma model are given (Itoh et al., 2001), Yurkevich and Lerner (2001)
investigated granular superconductors: from the nonlinear sigma model to the
Bose-Hubbard description, and Kamenev presented weak charge quantization as
an instanton of the interacting sigma model (Kamenev, 2000).

BRST invariant theories are the powerful tools studying the renormalizable
standard model (Becchi et al., 1975, 1976; t’Hooft, 1971; t’Hooft and Veltman,
1972; Lee and Zinn-Justin, 1972, 1973; Lee, 1974; Kugo and Ojima, 1979), and
the theories have been generally applied to both general gauge theories (Fradkin
and Vilkovisky, 1975; Batalin and Vilkovisky, 1977) and string theories (Kato and
Ogawa, 1983; Hwang, 1983; Siegel, 1984).

Dirac theory (Dirac, 1964) is a well-known theory quantizing constraint
physical systems, the Poisson brackets in second-class constraint systems are
transformed into Dirac brackets to make the system solvable. But the Dirac brack-
ets have ordering problem of field operators. When it is possible to convert a
second-class constraint system into a first-class constraint system, one can use
Poisson brackets to achieve the corresponding quantum commutators. Amorim,
Barcelos-Neto, Boschi-Filho, Ghosh, Henneaux, Kim, Nativiade, Park, Rothe and
Wilch well investigated the current interests about nonlinear σ models (Banerjee,
1993; Kim and Park, 1994; Henneaux and Wilch, 1998; Kim et al., 1998; Kim
and Rothe, 1998; Ghosh, 1994; Amorim and Barcelos-Neto, 1996; Nativiade and
Boschi-Filho, 2000).

This letter develops a method converting the second-class constraints into
first class ones by introducing auxiliary constraints and fields, and this formalism
may be used to all nonlinear σ models, and this approach may also be applied to
CP1 model (Banerjee et al., 1994; Banerjee, 1994) and so on different nonlinear
σ models.
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2. HAMILTONIAN DESCRIPTION OF A GENERALIZED 1+1 DIMEN-
SIONAL O(3) NONLINEAR σ MODEL WITH TOPOLOGICAL TERM

A generalized Lagrangian density of 1 + 1 dimensional O(3) nonlinear
σ model with subsidiary constraints, different Lagrange multiplier fields and
topological term is

L = 1

2q2
(∂µNi)(∂µNi) + k

4π
εµνεijkNi∂µNj∂νN

k

− λ0(NiNi − 1) − (∂µλ1)(∂µN ), (1)

where q is a coupling constant; µ = 0, 1; i = 1, 2, 3; ε01 = −ε10 = 1, ε123 =
−ε213 = 1 and (N )2 = NiNi ; λ0, λ̇1 and λ′

1 are different characteristic multi-
plier fields relative to subsidiary constraints (N )2 − 1 = 0, Ṅ = 0 and N ′ = 0,
respectively. Because of N = ±1, one may equivalently take N = 1 as constraint
in Eq. (1), and in the standard polar coordinate, since the action contains a full
integration over the full solid angle, the sign of the variable R can be changed at
will by a redefinition θ → π − θ, φ → π + φ, therefore, this is totally consistent.
The Lagrangian is still nonlinear (see M. E. Peskin and D. V. Schroeder, An intro-
duction to quantum field theory, Addison-Wesley publishing Company, 1995, P.
455), so does the nonlinear topological term. (∂µλ1)(∂µN ) in Eq. (1) still satisfies
the inverse symmetries of time and space. It is well known from constraint theory
that the Lagrange multiplier field λ1 is only time function, but λ1 isn’t only space
coordinate function, accordingly, (∂µλ1)(∂µN ) is simplified as λ̇1 Ṅ . In terns of
constraint theory, using a multiplier field to multiply a constraint condition and
adding the product into the Lagrangian mean that both extending variables and
temporarily loosing constraint condition, especially, Ṅ = Ni∂0N

i = 0 means that
different components Ni and ∂0N

i , respectively, of N and Ṅ are variable with time
t evolution, but they need to satisfy a constraint equation Ni∂0N

i = 0. Because
the constraint equation is a natural result from N = 1, this kind of systems is very
many in particle physics, field theory, condensed physics etc, thus this letter’s
studies are useful.

Because the system has O(3) symmetry, we may use polar coordinates to
represent the fields

N1 = R sin θ cos φ, N2 = R sin θ sin φ, N3 = R cos θ. (2)

Through a very long calculation, Eq. (1) can be rewritten as

L = 1

2q2

{
∂µR∂µR + R2

[
∂µθ∂µθ + sin2 θ∂µφ∂µφ

]}

− λ0 (R − 1) − λ̇1Ṙ + kR3 sin θ (∂0θ∂1φ − ∂0φ∂1θ ) /2π. (3)
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In the new field variables, the canonical momenta are

πR = ∂L

∂(∂0R)
= Ṙ

q2
− λ̇1, πθ = R2θ̇

q2
+ k

2π
R3 sin θ∂1φ (4)

πφ = R2 sin2 θφ̇

q2
− k

2π
R3 sin θ∂1θ, πλ0 = 0, πλ1 = −Ṙ, (5)

the second equation in (5) is a primary constraint in the system of polar coordinates.
Therefore, in Eqs. (1 and 3), we have converted the subsidiary constraints into
inner constraints in the nonlinear σ model.

Accordingly, in phase space, Eq. (3) can be expressed as

Lp = π2
λ1

2q2
− 1

2q2
(∂1R)2 + q2

2R2

(
πθ − k

2π
R3 sin θ∂1φ

)2

− R2

2q2
(∂1θ )2

+ q2

2R2 sin2 θ

(
πθ + k

2π
R3 sin θ∂1θ

)2

− R2 sin2 θ

2q2
(∂1ϕ)2 − λ0 (R − 1)

+ k

2π
R3 sin θ (∂0θ∂1φ − ∂0φ∂1θ ) −

(
πλ1

q2
+ πR

)
πλ1 , (6)

we, thus, can obtain the corresponding Hamiltonian density in phase space as
follows

Hp = πRṘ + πθ θ̇ + ππ φ̇ + πλ0 λ̇0 + πλ1 λ̇1 − Lp

= 1

2

{

−π2
λ1

q2
+ q2

R2

[
π2

θ + 1

sin2 θ
π2

φ

]}

+ 1

2q2

×
{

(∂1R)2 + R2

(
1 + k2g4

4π2
R2

) [
(∂∂1θ)2 + sin2 θ (∂1φ)2

]} + kq2

2π
R

×
(

1

sin θ
πφ∂1θ − sin θπθ∂1φ

)
+ λ0 (t) (R − 1) − πRπλ1 . (7)

Therefore, we obtain the total Hamiltonian density HT = HP + µ0πλ0 , µ0

is Lagrange multiplier, because we have converted the subsidiary constraints into
inner constraint and make the two subsidiary constraints change as an inner primary
constraint in the nonlinear σ model, which make the model easier to deal with,
see the following section.
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3. GAUGE FIXING GENERALIZATION, GAUGE GENERATOR,
GAUGE INVARIANCE AND DEDUCTION OF GENERAL
BRST TRANSFORMATION

Using the Lagrangian and Hamiltonian densities of the above system, we
deduce general BRST transformation by introducing a general fixed item and
gauge generator.

Utilizing Dirac-Bergman constrained theory (Henneaux and Teitelboim,
1992) and the primary constraint

�0 = πλ0 = 0 (8)

we deduce the secondary constraints as follows

�1 = 1 − R, �2 = πλ1 , (9)

there are not the other constraints after calculation, �0, �1 and �2 are all the con-
straints of the first class. If we do not introduce the subsidiary constraintṄ = 0,
we have to obtain and have difficultly to deal with a lot of various constraints
in the usual constraint theory (Henneaux and Teitelboim, 1992), for exam-
ple, when not introducing the constraint Ṅ = 0, one has to obtain a lot of
various constraints φ0 = πλ0 , φ1 = 1 − R, φ2 = −q2πR, φ3 = q2∂H/∂R, φ4 =
{q2∂H/∂R,H }, . . . , because φ4 has many terms, which may further yield a lot of
various constraints, these constraints are not intrinsic, and there are the first class
and the second class in these constraints, under the cases, it is very difficult that
one wants to find out general BRST transformation and to quantize the theory.

Because we have cancelled the superabundant non-intrinsic constraints and
have converted the all constraints into the constraints of the first class, in terms of
the definition of gauge generator (Henneaux and Teitelboim, 1992), we can have
the gauge generator that can generally deduce BRST transformation as follows

G =
∫

[ε̈πλ0 + ε̇(R − 1) + επλ1 ]dx, (10)

Using the gauge generator G we can obtain the following gauge transformation

δR = {R,G} = 0, δθ = {θ,G} = 0, δφ{φ,G} = 0, δλ0 = {λ0,G} = ε̈,

δπR = {πR,G} = −ε̇, δπθ = {πθ ,G} = 0, δπλ0 = {πλ0 ,G} = 0,

δπφ = {πφ,G} = 0, δλ1 = {λ1,G} = ε, δπλ1 = {πλ1 ,G} = 0. (11)

Define ε̇(t) = ωc(t), where ω is a Grassmann number not depending time
t, c(t) is a Grassmann number, then ε̇(t) is a commutative number. Using the
definition, we set up the connection between gauge transformation and BRST
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transformation, thus, we obtain

δπR = −ωc, δλ0 = ωċ, δλ1 = ω

∫ t

t0

c dt, (12)

where, not losing generality, we have taken ε(t0) = 0. For the generalized model,
we take a generalized gauge fixed term LGF of the Lagrangian density that is
different from all known gauge fixed terms as follows

LGF = b[πR − (β + 1)λ̇0] − 1

2
b2, (13)

where β is an arbitrary constant number not equating to −1, b is an assistant com-
mutative field. In order to make general research, we can further take a generalized
Faddev-Poppov Lagrangian density LFP different from all known Faddev-Poppov
Lagrangian densities as follows

LFP = (β + 1)˙̄cċ − c̄c. (14)

Therefore, we obtain a new generalized effective Lagrangian density Leff = Lp +
LGF+FP, where c is F-P ghost field, c̄ is anti-ghost field. When β = 0, Eqs. (13
and 14) return to usual cases, and δLGF+FP = 0 satisfies invariance of BRST
transformation, thus the generalizations are consistent.

Under the condition of keeping Leff invariant, we can find out the trans-
formations of fields of making ghost field and gauge fixed terms invariant, that
is

δLGF+FP = δ

[
b[πR − (β + 1)λ̇0] − 1

2
b2 + (β + 1) ˙̄cċ − c̄c

]

= δb[πR − (β + 1)λ̇0 − b] − (bω + δc̄)[(β + 1)c̈ + c]

+[(β + 1)¨̄c + c̄]δc + (β + 1)
d

dt
(δc̄ċ − ˙̄cδc), (15)

Due to δLGF+FP = 0 (i.e., satisfying invariance of BRST transformation), and the
last term is the whole derivative term about time t, this term may be neglected when
variational is done in integration. Accordingly we deduce when πR − (β + 1) λ̇0 −
b �= 0 and (β + 1) c̈ + c �= 0, there are the following three transformations

δb = 0, δc̄ = −bω, δc = 0 (16)

We finally deduce the general BRST transformation as follows

δR = δθ = δφ = δπθ = δπλ0 = δπλ1 = δπφ = δc = δb = 0 (17)

δc̄ = −bω, δλ0 = ωċ, δπR = −ωc, δλ1 = ω

∫ t

t0

c dt. (18)
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Using the last formula in (18), we gain δλ̇1 = ωc in Eqs. (1) and (3).
Because ω is a Grassmann constant, we can again obtain the general BRST

transformation

δc̄ = −b, δλ0 = ċ, δπR = −c, δλ1 =
∫ t

t0

c dt. (19)

Thus, Eq. (18) is equivalent to Eq. (19). When taking β (β �= −1) different
values, we achieve different conservation quantities and corresponding general
conclusion, and when β = 0 or/and λ1 = 0, the above all results are simplified,
e.g., when divorcing −ω from Eqs. (18) the transformation is simplified as the
results corresponding to C2 constraint in Eq. (27) in Ref. (Voruganti, 1989), thus,
our researches are general, and we discover that there is a gauge parameter β

in general BRST transformation in a general O(3) nonlinear sigma model, and
the gauge parameter β affects both the Lagrangian density and the Hamiltonian
densities, thus, the gauge parameter β may influences Euler-Lagrange equations,
conservation quantities and quantization etc of this system, because the gauge
parameter β originates from freedom degree of BRST transformation, the gauge
parameter β is analogous to the gauge parameter originating from freedom degree
of U(1) gauge transformation in electromagnetic field theory, then, the gauge
parameter β has physical meanings.

When there is not the λ̇1Ṅ term in Lagrangian (1), then there is not the term
λ̇1Ṙ in Eq. (3), which result in that the first term in (9) and the other secondary
constraints are the second class constraints, therefore, adding the term λ̇1Ṅ into
Lagrangian (1) makes the second class constraints automatically change as the
first class constraints due to the whole consistent inner structure of the constraints
and BRST transformation of the nonlinear sigma model, namely, which consis-
tently converts the second-class constraints into the first class ones by introducing
auxiliary constraint and field, and λ̇1Ṅ (not like the nonlinear sigma models in all
articles and books) guarantees the invariance of time-reverse of the Lagrangian
density; because all the monomials in the Lagrangian are of dimension smaller
than four, the theory is renormalizable (Itzykson et al., 1980), thus, we find the
whole consistent inner structure of the nonlinear sigma model, this formalism
may been directly or extendedly applied to almost all nonlinear σ models and CP1

model etc, because these models have the lost constraint Ṅ and the studies relative
to λ̇1, Ṅ etc have not been done up to now.

4. GENERALIZING LAGRANGIAN DENSITY OF GAUGE FIXING AND
GHOST FIELD AND CORRESPONDING HAMILTONIAN DENSITY

Using Lagrangian density Lp in phase space and Eqs. (13) and (14), we
get the generalized Lagrangian density that is invariant under the general BRST



2444 Huang, Yang, and Lee

transformation as follows

LBRST = Lp + LGF+FP = π2
λ1

2q2
− 1

2q2
(∂1R)2 + q2

2R2

(
πθ − k

2π
R3 sin θ∂1φ

)2

− R2

2q2
(∂1θ)2 + q2

2R2 sin2 θ

(
πϕ + k

2π
R3 sin θ∂1θ

)2

− R2 sin2 θ

2q2
(∂1ϕ)2

− λ(R − 1) + k

2π
R3 sin θ · (∂0θ∂1φ − ∂0φ∂1θ ) −

(
πλ1

q2
+ πR

)
πλ1

+
[
b

[
πR − (β + 1) λ̇0

] − 1

2
b2 + (β + 1) ˙̄cċ − c̄c

]
, (20)

where δLBRST = LGF+FP satisfies the nilpotency δ2LBRST = 0, then the relative
canonical momenta are

πλ0 = − (β + 1) b, πc = − (β + 1) ˙̄c, πC = (β + 1) ċ. (21)

Therefore, the general Hamiltonian density containing ghost field and general
gauge condition is

HBRST = πRṘ + πθ θ̇ + πφφ̇ + πλ0λ̇0 + πλ1 λ̇1 + πcċ + ˙̄cπc̄ − LBRST

= 1

2

{
−π2

λ1

q2
+ q2

R2

[
π2

θ + 1

sin2 θ
π2

φ

]}
+ 1

2q2

{
(∂1R)2

+R2

(
1 + k2g4

4π2
R2

)
[(∂1θ )2 + sin2 θ (∂1φ)2]

}

+ kq2

2π
R

(
1

sin θ
πφ∂1θ − sin θπθ∂1φ

)

+ λ(t)(R − 1) − πRπλ1 + 1

(β + 1)
πcπc̄ + 1

2(β + 1)2
π2

λ0

+ 1

(β + 1)
πλ0πR + c̄c, (22)

where the whole differential term about time t has be neglected.
In the following, we find out their commutative relations. Using Eq. (22) we

obtain the canonical equations of c and c̄ as follows

{
c, HBRST

} = ∂0c = ∂HBRST

∂πc

= πc̄

(β + 1)
, (23)

{
c̄, HBRST

} = ∂0c̄ = ∂HBRST

∂πc̄

= − πc

(β + 1)
. (24)
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Then Eqs. (21), (23 and 24) are consistent about c and c̄, thus, this letter’s gener-
alizations are consistent.

Because c and c̄ are both independent canonical variables, one may obtain
that ∂0c and c̄ or ∂0c̄ and c have anti-commutative relations, namely,

{πc, πc̄} = {c, c̄} = 0, ∂0 {c̄, c} = 0, {∂0c̄, c} = (−1) {∂0c, c̄} , (25)

c satisfies also Heisenbeger moving equation of Fermi field

{c, HBRST} = i∂0c = iπc̄

(β + 1)
. (26)

Which is also consistent with Eqs. (21) and (23), the other commutative relations
can be similarly obtained.

On the other hand, due to {c(x), πc(x ′)} = iδ(x − x ′), then we obtain

{
c̄ (x) , ċ

(
x ′)} = iδ

(
x − x ′)

(β + 1)
= −{c(x), ˙̄c(n′)}, (27)

Eq. (27) represents two new general anticommutative relations about ghost
field, the minus sign in Eq. (27) is not trivial. When β = 0, Eq. (4.8) returns to the
past anti-commutative relation. Because general physical processes should satisfy
quantitative causal relation (Huang et al., 2004; Huang and Weng, 2005; Huang
et al.,) e.g., Huang and Lin (2002) uses the no-loss-no-gain homeomorphic map
transformation satisfying the quantitative causal relation to gain exact strain tensor
formulas in Weitzenböck manifold, and due to action of the classical constraint
conditions, when quantizing these constraints, there exist the corresponding ef-
fects, and because our researches not only are very general, but also are different
from the past works, e.g., Friedan (1980) and Friedan (1985) we can finish not
only the general BRST quantization of the system, but also give their relative con-
servation charge etc all more studies on different nonlinear sigma models, owing
to space limit, these and a lot of applications and generalizations will be written
in the other papers.

5. SUMMARY AND CONCLUSION

This letter gives a generalized Lagrangian density of 1 + 1 Dimensional
O(3) nonlinear σ model with subsidiary constraints, Lagrange multiplier fields
and topological term, finds a lost intrinsic constraint condition, converts the sub-
sidiary constraints into inner constraints in the nonlinear σ model, and makes the
two subsidiary constraints change as the inner primary constraint in the nonlinear
σ model, which make the model easier to deal with. The example of not introduc-
ing the lost constraint Ṅ = 0 is given, by comparing the example with the case
of introducing the lost constraint, we obtain that when not introducing the lost
constraint, one has to obtain a lot of various non-intrinsic constraints. This letter
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gives both a generalized gauge fixed term LGF and a generalized Faddev-Poppov
Lagrangian density LFP, the both are different from all known ones. Using Dirac
constrained theory and the extended condition, we deduce the gauge generator that
can generally deduce BRST transformation, set up the connection between gauge
transformation and BRST transformation, give the general BRST transformation
of (1 + 1) Dimensional O(3) nonlinear model with topological term under the
general conditions, and it is discovered that there exists a gauge parameter β orig-
inating from freedom degree of BRST transformation in a general O(3) nonlinear
sigma model, the gauge parameter β influences Euler-Lagrange equations, con-
servation quantities and quantization etc of this system, and the gauge parameter
β is analogous to the gauge parameter originating from freedom degree of U(1)
gauge transformation in electromagnetic field theory, then, the gauge parameter
β has important physical meaning. We gain the general commutation relations of
ghost field, consistently convert the second-class constraints into first class ones
by introducing auxiliary constraints and fields, and the theory is renormalizable,
we find out the whole consistent inner structure of the constraints and BRST trans-
formation of nonlinear sigma model, this formalism may be generally applied to
some different kinds of nonlinear σ models.
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